Plant Growth Model Using Artificial Neural Networks
نویسندگان
چکیده
The goal of Advanced Life Support Systems (ALSS) is to provide self-sufficiency in life support for productive research and exploration in space. Important in reaching this goal is the production of crop plants in one or more controlled environments for the purpose of providing life essential food, air, and water to a human crew. To do this reliably and efficiently, it is necessary to achieve control of the rates of various plant physiology processes. To develop an efficient control system that VW be able to manage, control, and optimize plant-based l i f e s u p p o r t f u n c t i o n s , s y s t e m identif ication a n d modeling of plant growth behavior must first be accomplished. We have developed a plant growth (physiology) model using artificial neural networks. Neural networks are suitable for both steady-state and dynamic modeling and identification tasks, since they can be trained to approximate arbitrary nonlinear inputoutput mappings from a collection of input and output examples. In addition, they can be expanded to incorporate a large number of inputs and outputs as required, which makes it simple to model multivariable systems. In this paper, we describe our motivation and approach to developing these models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented. The approach is to develop and validate neural network submodels describing the individual plant-based functions (assimilation, biomass allocation and accumulation, and resource demands) and to integrate them for full control of plant-based life support functions. With the use of neural networks, these complex, nonlinear, dynamic, multimodal, multivariable plant growth models will be able to better interpolate between various environmental conditions and parameters and be able to simulate responses and performance of various plants. Frank Zee Jet Propulsion Laboratory David Bubenheim NASA Ames Research Center
منابع مشابه
Application of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملEstimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملEstimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks
Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...
متن کامل"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River
The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999